Cargando…
Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures
Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic net...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928449/ https://www.ncbi.nlm.nih.gov/pubmed/33657119 http://dx.doi.org/10.1371/journal.pone.0246924 |
_version_ | 1783659858367610880 |
---|---|
author | Bayat, F. Kemal Polat Budak, Betul Yiğit, Esra Nur Öztürk, Gürkan Gülçür, Halil Özcan Güveniş, Albert |
author_facet | Bayat, F. Kemal Polat Budak, Betul Yiğit, Esra Nur Öztürk, Gürkan Gülçür, Halil Özcan Güveniş, Albert |
author_sort | Bayat, F. Kemal |
collection | PubMed |
description | Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic network formation ability of the sensory neurons. To identify interaction profiles of Dorsal Root Ganglia (DRG) neurons and explore their putative connectivity, we developed an in vitro experimental approach. A double transgenic mouse model, expressing genetically encoded calcium indicator (GECI) in their glutamatergic neurons, was produced. Dissociated DRG cultures from adult mice were prepared with a serum-free protocol and no additional growth factors or cytokines were utilized for neuronal sensitization. DRG neurons were grown on microelectrode arrays (MEA) to induce stimulus-evoked activity with a modality-free stimulation strategy. With an almost single-cell level electrical stimulation, spontaneous and evoked activity of GCaMP6s expressing neurons were detected under confocal microscope. Typical responses were analyzed, and correlated calcium events were detected across individual DRG neurons. Next, correlated responses were successfully blocked by glutamatergic receptor antagonists, which indicated functional synaptic coupling. Immunostaining confirmed the presence of synapses mainly in the axonal terminals, axon-soma junctions and axon-axon intersection sites. Concisely, the results presented here illustrate a new type of neuron-to-neuron interaction in cultured DRG neurons conducted through synapses. The developed assay can be a valuable tool to analyze individual and collective responses of the cultured sensory neurons. |
format | Online Article Text |
id | pubmed-7928449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79284492021-03-10 Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures Bayat, F. Kemal Polat Budak, Betul Yiğit, Esra Nur Öztürk, Gürkan Gülçür, Halil Özcan Güveniş, Albert PLoS One Research Article Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic network formation ability of the sensory neurons. To identify interaction profiles of Dorsal Root Ganglia (DRG) neurons and explore their putative connectivity, we developed an in vitro experimental approach. A double transgenic mouse model, expressing genetically encoded calcium indicator (GECI) in their glutamatergic neurons, was produced. Dissociated DRG cultures from adult mice were prepared with a serum-free protocol and no additional growth factors or cytokines were utilized for neuronal sensitization. DRG neurons were grown on microelectrode arrays (MEA) to induce stimulus-evoked activity with a modality-free stimulation strategy. With an almost single-cell level electrical stimulation, spontaneous and evoked activity of GCaMP6s expressing neurons were detected under confocal microscope. Typical responses were analyzed, and correlated calcium events were detected across individual DRG neurons. Next, correlated responses were successfully blocked by glutamatergic receptor antagonists, which indicated functional synaptic coupling. Immunostaining confirmed the presence of synapses mainly in the axonal terminals, axon-soma junctions and axon-axon intersection sites. Concisely, the results presented here illustrate a new type of neuron-to-neuron interaction in cultured DRG neurons conducted through synapses. The developed assay can be a valuable tool to analyze individual and collective responses of the cultured sensory neurons. Public Library of Science 2021-03-03 /pmc/articles/PMC7928449/ /pubmed/33657119 http://dx.doi.org/10.1371/journal.pone.0246924 Text en © 2021 Bayat et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Bayat, F. Kemal Polat Budak, Betul Yiğit, Esra Nur Öztürk, Gürkan Gülçür, Halil Özcan Güveniş, Albert Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title | Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title_full | Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title_fullStr | Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title_full_unstemmed | Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title_short | Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
title_sort | adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928449/ https://www.ncbi.nlm.nih.gov/pubmed/33657119 http://dx.doi.org/10.1371/journal.pone.0246924 |
work_keys_str_mv | AT bayatfkemal adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures AT polatbudakbetul adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures AT yigitesranur adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures AT ozturkgurkan adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures AT gulcurhalilozcan adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures AT guvenisalbert adultmousedorsalrootganglianeuronsformaberrantglutamatergicconnectionsindissociatedcultures |