Cargando…
Supervised machine learning to support the diagnosis of bacterial infection in the context of COVID-19
BACKGROUND: Bacterial infection has been challenging to diagnose in patients with COVID-19. We developed and evaluated supervised machine learning algorithms to support the diagnosis of secondary bacterial infection in hospitalized patients during the COVID-19 pandemic. METHODS: Inpatient data at th...
Autores principales: | Rawson, Timothy M, Hernandez, Bernard, Wilson, Richard C, Ming, Damien, Herrero, Pau, Ranganathan, Nisha, Skolimowska, Keira, Gilchrist, Mark, Satta, Giovanni, Georgiou, Pantelis, Holmes, Alison H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928888/ https://www.ncbi.nlm.nih.gov/pubmed/34192255 http://dx.doi.org/10.1093/jacamr/dlab002 |
Ejemplares similares
-
Supervised learning for infection risk inference using pathology data
por: Hernandez, Bernard, et al.
Publicado: (2017) -
Resistance Trend Estimation Using Regression Analysis to Enhance Antimicrobial Surveillance: A Multi-Centre Study in London 2009–2016
por: Hernandez, Bernard, et al.
Publicado: (2021) -
Closed-loop control of continuous piperacillin delivery: An in silico study
por: Herrero, Pau, et al.
Publicado: (2022) -
Machine learning and synthetic outcome estimation for individualised antimicrobial cessation
por: Bolton, William J., et al.
Publicado: (2022) -
Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study
por: Rawson, Timothy Miles, et al.
Publicado: (2016)