Cargando…

Repurposing approved drugs for cancer therapy

BACKGROUND: Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES: Literature searches with keywords ‘repurposing and cancer’ books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/ ARE...

Descripción completa

Detalles Bibliográficos
Autor principal: Schein, Catherine H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929227/
https://www.ncbi.nlm.nih.gov/pubmed/33517358
http://dx.doi.org/10.1093/bmb/ldaa045
_version_ 1783659919424094208
author Schein, Catherine H
author_facet Schein, Catherine H
author_sort Schein, Catherine H
collection PubMed
description BACKGROUND: Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES: Literature searches with keywords ‘repurposing and cancer’ books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/ AREAS OF AGREEMENT: Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY: Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS: Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH: Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation.
format Online
Article
Text
id pubmed-7929227
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-79292272021-03-04 Repurposing approved drugs for cancer therapy Schein, Catherine H Br Med Bull Invited Review BACKGROUND: Many drugs approved for other indications can control the growth of tumor cells and limit adverse events (AE). DATA SOURCES: Literature searches with keywords ‘repurposing and cancer’ books, websites: https://clinicaltrials.gov/, for drug structures: https://pubchem.ncbi.nlm.nih.gov/ AREAS OF AGREEMENT: Introducing approved drugs, such as those developed to treat diabetes (Metformin) or inflammation (Thalidomide), identified to have cytostatic activity, can enhance chemotherapy or even replace more cytotoxic drugs. Also, anti-inflammatory compounds, cytokines and inhibitors of proteolysis can be used to control the side effects of chemo- and immuno-therapies or as second-line treatments for tumors resistant to kinase inhibitors (KI). Drugs specifically developed for cancer therapy, such as interferons (IFN), the tyrosine KI abivertinib TKI (tyrosine kinase inhibitor) and interleukin-6 (IL-6) receptor inhibitors, may help control symptoms of Covid-19. AREAS OF CONTROVERSY: Better knowledge of mechanisms of drug activities is essential for repurposing. Chemotherapies induce ER stress and enhance mutation rates and chromosome alterations, leading to resistance that cannot always be related to mutations in the target gene. Metformin, thalidomide and cytokines (IFN, tumor necrosis factor (TNF), interleukin-2 (IL-2) and others) have pleiomorphic activities, some of which can enhance tumorigenesis. The small and fragile patient pools available for clinical trials can cloud the data on the usefulness of cotreatments. GROWING POINTS: Better understanding of drug metabolism and mechanisms should aid in repurposing drugs for primary, adjuvant and adjunct treatments. AREAS TIMELY FOR DEVELOPING RESEARCH: Optimizing drug combinations, reducing cytotoxicity of chemotherapeutics and controlling associated inflammation. Oxford University Press 2021-02-01 /pmc/articles/PMC7929227/ /pubmed/33517358 http://dx.doi.org/10.1093/bmb/ldaa045 Text en © The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
spellingShingle Invited Review
Schein, Catherine H
Repurposing approved drugs for cancer therapy
title Repurposing approved drugs for cancer therapy
title_full Repurposing approved drugs for cancer therapy
title_fullStr Repurposing approved drugs for cancer therapy
title_full_unstemmed Repurposing approved drugs for cancer therapy
title_short Repurposing approved drugs for cancer therapy
title_sort repurposing approved drugs for cancer therapy
topic Invited Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929227/
https://www.ncbi.nlm.nih.gov/pubmed/33517358
http://dx.doi.org/10.1093/bmb/ldaa045
work_keys_str_mv AT scheincatherineh repurposingapproveddrugsforcancertherapy