Cargando…

Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment

The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Pavel, Alisa, del Giudice, Giusy, Federico, Antonio, Di Lieto, Antonio, Kinaret, Pia A S, Serra, Angela, Greco, Dario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929418/
https://www.ncbi.nlm.nih.gov/pubmed/33569598
http://dx.doi.org/10.1093/bib/bbaa417
Descripción
Sumario:The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.