Cargando…

Durable memories and efficient neural coding through mnemonic training using the method of loci

Mnemonic techniques, such as the method of loci, can powerfully boost memory. We compared memory athletes ranked among the world’s top 50 in memory sports to mnemonics-naïve controls. In a second study, participants completed a 6-week memory training, working memory training, or no intervention. Beh...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, I. C., Konrad, B. N., Schuster, P., Weisig, S., Repantis, D., Ohla, K., Kühn, S., Fernández, G., Steiger, A., Lamm, C., Czisch, M., Dresler, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929507/
https://www.ncbi.nlm.nih.gov/pubmed/33658191
http://dx.doi.org/10.1126/sciadv.abc7606
Descripción
Sumario:Mnemonic techniques, such as the method of loci, can powerfully boost memory. We compared memory athletes ranked among the world’s top 50 in memory sports to mnemonics-naïve controls. In a second study, participants completed a 6-week memory training, working memory training, or no intervention. Behaviorally, memory training enhanced durable, longer-lasting memories. Functional magnetic resonance imaging during encoding and recognition revealed task-based activation decreases in lateral prefrontal, as well as in parahippocampal and retrosplenial cortices in both memory athletes and participants after memory training, partly associated with better performance after 4 months. This was complemented by hippocampal-neocortical coupling during consolidation, which was stronger the more durable memories participants formed. Our findings advance knowledge on how mnemonic training boosts durable memory formation through decreased task-based activation and increased consolidation thereafter. This is in line with conceptual accounts of neural efficiency and highlights a complex interplay of neural processes critical for extraordinary memory.