Cargando…
Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks
The electric organs of electric eels are able to convert ionic gradients into high-efficiency electricity because their electrocytes contain numerous “subnanoscale” protein ion channels that can achieve highly selective and ultrafast ion transport. Despite increasing awareness of blue energy product...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929511/ https://www.ncbi.nlm.nih.gov/pubmed/33658204 http://dx.doi.org/10.1126/sciadv.abe9924 |
Sumario: | The electric organs of electric eels are able to convert ionic gradients into high-efficiency electricity because their electrocytes contain numerous “subnanoscale” protein ion channels that can achieve highly selective and ultrafast ion transport. Despite increasing awareness of blue energy production through nanochannel membranes, achieving high-performance energy output remains considerably unexplored. Here, we report on a heterogeneous subnanochannel membrane, consisting of a continuous UiO-66-NH(2) metal-organic framework (MOF) and a highly ordered alumina nanochannel membrane. In the positively charged membrane, the angstrom-scale windows function as ionic filters for screening anions with different hydrated sizes. Driven by osmosis, the subnanochannel membrane can produce an exceptionally high Br(−)/NO(3)(−) selectivity of ~1240, hence yielding an unprecedented power of up to 26.8 W/m(2) under a 100-fold KBr gradient. Achieving ultrahigh selective and ultrafast osmotic transport in ion channel–mimetic MOF-based membranes opens previously unexplored avenues toward advanced separation technologies and energy-harvesting devices. |
---|