Cargando…

Stimuli-responsive biomaterials for cardiac tissue engineering and dynamic mechanobiology

Since the term “smart materials” was put forward in the 1980s, stimuli-responsive biomaterials have been used as powerful tools in tissue engineering, mechanobiology, and clinical applications. For the purpose of myocardial repair and regeneration, stimuli-responsive biomaterials are employed to fab...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Huaiyu, Wang, Chenyan, Ma, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929620/
https://www.ncbi.nlm.nih.gov/pubmed/33688616
http://dx.doi.org/10.1063/5.0025378
Descripción
Sumario:Since the term “smart materials” was put forward in the 1980s, stimuli-responsive biomaterials have been used as powerful tools in tissue engineering, mechanobiology, and clinical applications. For the purpose of myocardial repair and regeneration, stimuli-responsive biomaterials are employed to fabricate hydrogels and nanoparticles for targeted delivery of therapeutic drugs and cells, which have been proved to alleviate disease progression and enhance tissue regeneration. By reproducing the sophisticated and dynamic microenvironment of the native heart, stimuli-responsive biomaterials have also been used to engineer dynamic culture systems to understand how cardiac cells and tissues respond to progressive changes in extracellular microenvironments, enabling the investigation of dynamic cell mechanobiology. Here, we provide an overview of stimuli-responsive biomaterials used in cardiovascular research applications, with a specific focus on cardiac tissue engineering and dynamic cell mechanobiology. We also discuss how these smart materials can be utilized to mimic the dynamic microenvironment during heart development, which might provide an opportunity to reveal the fundamental mechanisms of cardiomyogenesis and cardiac maturation.