Cargando…
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering
The existing studies have shown that miRNAs are related to human diseases by regulating gene expression. Identifying miRNA association with diseases will contribute to diagnosis, treatment, and prognosis of diseases. The experimental identification of miRNA-disease associations is time-consuming, tr...
Autores principales: | Wang, Li, Zhong, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929672/ https://www.ncbi.nlm.nih.gov/pubmed/33681362 http://dx.doi.org/10.1155/2021/6652948 |
Ejemplares similares
-
Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering
por: Nie, Ru, et al.
Publicado: (2021) -
Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph
por: Nguyen, Van Tinh, et al.
Publicado: (2021) -
DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph
por: Yang, Long, et al.
Publicado: (2022) -
DRMDA: deep representations‐based miRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
A deep ensemble model to predict miRNA-disease association
por: Fu, Laiyi, et al.
Publicado: (2017)