Cargando…
Variable Smoothing for Weakly Convex Composite Functions
We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We d...
Autores principales: | Böhm, Axel, Wright, Stephen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929970/ https://www.ncbi.nlm.nih.gov/pubmed/33746291 http://dx.doi.org/10.1007/s10957-020-01800-z |
Ejemplares similares
-
Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
por: Boţ, Radu Ioan, et al.
Publicado: (2020) -
On smoothness and singularities of convex hypersurfaces
por: Burago, Yu D, et al.
Publicado: (1995) -
Exposed points of convex sets and weak sequential convergence
por: Granirer, Edmond E
Publicado: (1972) -
Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function
por: Shi, Huan-Nan, et al.
Publicado: (2016) -
Convex functions
por: Roberts, A Wayne, et al.
Publicado: (1973)