Cargando…
Data-driven control of complex networks
Our ability to manipulate the behavior of complex networks depends on the design of efficient control algorithms and, critically, on the availability of an accurate and tractable model of the network dynamics. While the design of control algorithms for network systems has seen notable advances in th...
Autores principales: | Baggio, Giacomo, Bassett, Danielle S., Pasqualetti, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930026/ https://www.ncbi.nlm.nih.gov/pubmed/33658486 http://dx.doi.org/10.1038/s41467-021-21554-0 |
Ejemplares similares
-
Functional control of oscillator networks
por: Menara, Tommaso, et al.
Publicado: (2022) -
Optimally controlling the human connectome: the role of network topology
por: Betzel, Richard F., et al.
Publicado: (2016) -
Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks
por: Patankar, Shubhankar P., et al.
Publicado: (2020) -
Stimulation-Based Control of Dynamic Brain Networks
por: Muldoon, Sarah Feldt, et al.
Publicado: (2016) -
Time-evolving controllability of effective connectivity networks during seizure progression
por: Scheid, Brittany H., et al.
Publicado: (2021)