Cargando…

Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response

Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals wi...

Descripción completa

Detalles Bibliográficos
Autores principales: McGowan, Ed, Rosenthal, Rachel, Fiore-Gartland, Andrew, Macharia, Gladys, Balinda, Sheila, Kapaata, Anne, Umviligihozo, Gisele, Muok, Erick, Dalel, Jama, Streatfield, Claire L., Coutinho, Helen, Dilernia, Dario, Monaco, Daniela C., Morrison, David, Yue, Ling, Hunter, Eric, Nielsen, Morten, Gilmour, Jill, Hare, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930081/
https://www.ncbi.nlm.nih.gov/pubmed/33679745
http://dx.doi.org/10.3389/fimmu.2021.609884
_version_ 1783660040109948928
author McGowan, Ed
Rosenthal, Rachel
Fiore-Gartland, Andrew
Macharia, Gladys
Balinda, Sheila
Kapaata, Anne
Umviligihozo, Gisele
Muok, Erick
Dalel, Jama
Streatfield, Claire L.
Coutinho, Helen
Dilernia, Dario
Monaco, Daniela C.
Morrison, David
Yue, Ling
Hunter, Eric
Nielsen, Morten
Gilmour, Jill
Hare, Jonathan
author_facet McGowan, Ed
Rosenthal, Rachel
Fiore-Gartland, Andrew
Macharia, Gladys
Balinda, Sheila
Kapaata, Anne
Umviligihozo, Gisele
Muok, Erick
Dalel, Jama
Streatfield, Claire L.
Coutinho, Helen
Dilernia, Dario
Monaco, Daniela C.
Morrison, David
Yue, Ling
Hunter, Eric
Nielsen, Morten
Gilmour, Jill
Hare, Jonathan
author_sort McGowan, Ed
collection PubMed
description Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.
format Online
Article
Text
id pubmed-7930081
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79300812021-03-05 Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response McGowan, Ed Rosenthal, Rachel Fiore-Gartland, Andrew Macharia, Gladys Balinda, Sheila Kapaata, Anne Umviligihozo, Gisele Muok, Erick Dalel, Jama Streatfield, Claire L. Coutinho, Helen Dilernia, Dario Monaco, Daniela C. Morrison, David Yue, Ling Hunter, Eric Nielsen, Morten Gilmour, Jill Hare, Jonathan Front Immunol Immunology Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage. Frontiers Media S.A. 2021-02-18 /pmc/articles/PMC7930081/ /pubmed/33679745 http://dx.doi.org/10.3389/fimmu.2021.609884 Text en Copyright © 2021 McGowan, Rosenthal, Fiore-Gartland, Macharia, Balinda, Kapaata, Umviligihozo, Muok, Dalel, Streatfield, Coutinho, Dilernia, Monaco, Morrison, Yue, Hunter, Nielsen, Gilmour and Hare. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
McGowan, Ed
Rosenthal, Rachel
Fiore-Gartland, Andrew
Macharia, Gladys
Balinda, Sheila
Kapaata, Anne
Umviligihozo, Gisele
Muok, Erick
Dalel, Jama
Streatfield, Claire L.
Coutinho, Helen
Dilernia, Dario
Monaco, Daniela C.
Morrison, David
Yue, Ling
Hunter, Eric
Nielsen, Morten
Gilmour, Jill
Hare, Jonathan
Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title_full Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title_fullStr Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title_full_unstemmed Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title_short Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response
title_sort utilizing computational machine learning tools to understand immunogenic breadth in the context of a cd8 t-cell mediated hiv response
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930081/
https://www.ncbi.nlm.nih.gov/pubmed/33679745
http://dx.doi.org/10.3389/fimmu.2021.609884
work_keys_str_mv AT mcgowaned utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT rosenthalrachel utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT fioregartlandandrew utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT machariagladys utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT balindasheila utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT kapaataanne utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT umviligihozogisele utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT muokerick utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT daleljama utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT streatfieldclairel utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT coutinhohelen utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT dilerniadario utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT monacodanielac utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT morrisondavid utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT yueling utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT huntereric utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT nielsenmorten utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT gilmourjill utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse
AT harejonathan utilizingcomputationalmachinelearningtoolstounderstandimmunogenicbreadthinthecontextofacd8tcellmediatedhivresponse