Cargando…
An Interpretable Model-Based Prediction of Severity and Crucial Factors in Patients with COVID-19
This study established an interpretable machine learning model to predict the severity of coronavirus disease 2019 (COVID-19) and output the most crucial deterioration factors. Clinical information, laboratory tests, and chest computed tomography (CT) scans at admission were collected. Two experienc...
Autores principales: | Zheng, Bowen, Cai, Yong, Zeng, Fengxia, Lin, Min, Zheng, Jun, Chen, Weiguo, Qin, Genggeng, Guo, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930914/ https://www.ncbi.nlm.nih.gov/pubmed/33708997 http://dx.doi.org/10.1155/2021/8840835 |
Ejemplares similares
-
The diagnostic value of chest X-ray in coronavirus disease 2019: A comparative study of X-ray and CT
por: Zeng, Fengxia, et al.
Publicado: (2021) -
Preoperative radiomics model using gadobenate dimeglumine-enhanced magnetic resonance imaging for predicting β-catenin mutation in patients with hepatocellular carcinoma: A retrospective study
por: Zeng, Fengxia, et al.
Publicado: (2022) -
Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors
por: Pan, Derun, et al.
Publicado: (2021) -
Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells
por: Zeng, Wenjin, et al.
Publicado: (2017) -
A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer
por: Li, Yi, et al.
Publicado: (2021)