Cargando…

One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation

A convenient method for the preparation of polybasic ternary hybrid cryogels consisting of Halloysite nanotubes (HNTs) and tertiary amine functional groups by freezing-induced gelation is proposed. Ternary hybrid gels were produced via one-shot radical terpolymerization of 2-hydroxyethyl methacrylat...

Descripción completa

Detalles Bibliográficos
Autores principales: Okten Besli, Nur Sena, Orakdogen, Nermin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931030/
https://www.ncbi.nlm.nih.gov/pubmed/33562842
http://dx.doi.org/10.3390/gels7010016
_version_ 1783660209013522432
author Okten Besli, Nur Sena
Orakdogen, Nermin
author_facet Okten Besli, Nur Sena
Orakdogen, Nermin
author_sort Okten Besli, Nur Sena
collection PubMed
description A convenient method for the preparation of polybasic ternary hybrid cryogels consisting of Halloysite nanotubes (HNTs) and tertiary amine functional groups by freezing-induced gelation is proposed. Ternary hybrid gels were produced via one-shot radical terpolymerization of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and DEAEMA in the presence of HNTs. The equilibrium swelling in various swelling media and the mechanical properties of the produced ternary hybrid gels were analyzed to investigate their network structure and determine their final performance. The swelling ratio of HNT-free gels was significantly higher than the ternary hybrid gels composed of high amount of HNTs. The addition of HNTs to terpolymer network did not suppress pH- and temperature-sensitive behavior. While DEAEMA groups were effective for pH-sensitive swelling, it was determined that both HEMA and DEAEMA groups were effective in temperature-sensitive swelling. Ternary hybrid gels simultaneously demonstrated both negative and positive temperature-responsive swelling behavior. The swelling ratio changed considerably according to swelling temperature. Both DEAEMA and HEMA monomers in terpolymer structure were dominant in temperature-sensitive swelling. Mechanical tests in compression of both as-prepared and swollen-state demonstrated that strength and modulus of hybrid cryogels significantly increased with addition of HNTs without significant loss of mechanical strength. Ultimately, the results of the current system can benefit characterization with analysis tools for the application of innovative materials.
format Online
Article
Text
id pubmed-7931030
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79310302021-03-05 One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation Okten Besli, Nur Sena Orakdogen, Nermin Gels Article A convenient method for the preparation of polybasic ternary hybrid cryogels consisting of Halloysite nanotubes (HNTs) and tertiary amine functional groups by freezing-induced gelation is proposed. Ternary hybrid gels were produced via one-shot radical terpolymerization of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and DEAEMA in the presence of HNTs. The equilibrium swelling in various swelling media and the mechanical properties of the produced ternary hybrid gels were analyzed to investigate their network structure and determine their final performance. The swelling ratio of HNT-free gels was significantly higher than the ternary hybrid gels composed of high amount of HNTs. The addition of HNTs to terpolymer network did not suppress pH- and temperature-sensitive behavior. While DEAEMA groups were effective for pH-sensitive swelling, it was determined that both HEMA and DEAEMA groups were effective in temperature-sensitive swelling. Ternary hybrid gels simultaneously demonstrated both negative and positive temperature-responsive swelling behavior. The swelling ratio changed considerably according to swelling temperature. Both DEAEMA and HEMA monomers in terpolymer structure were dominant in temperature-sensitive swelling. Mechanical tests in compression of both as-prepared and swollen-state demonstrated that strength and modulus of hybrid cryogels significantly increased with addition of HNTs without significant loss of mechanical strength. Ultimately, the results of the current system can benefit characterization with analysis tools for the application of innovative materials. MDPI 2021-02-05 /pmc/articles/PMC7931030/ /pubmed/33562842 http://dx.doi.org/10.3390/gels7010016 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Okten Besli, Nur Sena
Orakdogen, Nermin
One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title_full One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title_fullStr One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title_full_unstemmed One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title_short One-Shot Preparation of Polybasic Ternary Hybrid Cryogels Consisting of Halloysite Nanotubes and Tertiary Amine Functional Groups: An Efficient and Convenient Way by Freezing-Induced Gelation
title_sort one-shot preparation of polybasic ternary hybrid cryogels consisting of halloysite nanotubes and tertiary amine functional groups: an efficient and convenient way by freezing-induced gelation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931030/
https://www.ncbi.nlm.nih.gov/pubmed/33562842
http://dx.doi.org/10.3390/gels7010016
work_keys_str_mv AT oktenbeslinursena oneshotpreparationofpolybasicternaryhybridcryogelsconsistingofhalloysitenanotubesandtertiaryaminefunctionalgroupsanefficientandconvenientwaybyfreezinginducedgelation
AT orakdogennermin oneshotpreparationofpolybasicternaryhybridcryogelsconsistingofhalloysitenanotubesandtertiaryaminefunctionalgroupsanefficientandconvenientwaybyfreezinginducedgelation