Cargando…

Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics

[Image: see text] The pharmacokinetics, safety, and anticancer efficacy profiles of nanoparticle albumin-bound (nab)-paclitaxel formulations are superior to those of solvent-based paclitaxel formulations. The aims of the present study were to study the effects of nab-paclitaxel and solvent-based pac...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jhih-Wei, Kuo, Ching-Hua, Kuo, Han-Chun, Shih, Jin-Yuan, Tsai, Teng-Wen, Chang, Lin-Chau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931197/
https://www.ncbi.nlm.nih.gov/pubmed/33681555
http://dx.doi.org/10.1021/acsomega.0c04385
_version_ 1783660244472168448
author Huang, Jhih-Wei
Kuo, Ching-Hua
Kuo, Han-Chun
Shih, Jin-Yuan
Tsai, Teng-Wen
Chang, Lin-Chau
author_facet Huang, Jhih-Wei
Kuo, Ching-Hua
Kuo, Han-Chun
Shih, Jin-Yuan
Tsai, Teng-Wen
Chang, Lin-Chau
author_sort Huang, Jhih-Wei
collection PubMed
description [Image: see text] The pharmacokinetics, safety, and anticancer efficacy profiles of nanoparticle albumin-bound (nab)-paclitaxel formulations are superior to those of solvent-based paclitaxel formulations. The aims of the present study were to study the effects of nab-paclitaxel and solvent-based paclitaxel formulations on the metabolic profiles of the model cell line (A549) and attempt to elucidate the associated metabolic pathways. A mass spectrometry-based cell metabolomics approach and viability evaluation were used to explore the potential difference. Western blotting was utilized to measure the levels of relevant proteins, and carnitine palmitoyltransferase 1 (CPT1) activities were quantified. Fold changes normalized to controls in levels of carnitine and several acylcarnitines were significantly different (p < 0.05) between A549 cells treated with nab-paclitaxel and those treated with solvent-based paclitaxel. Relative to the controls, there were also significant fold change differences in palmitic and linoleic acid levels in the cell lysates, mitochondrial CPT1 activities, and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD) protein levels in the A549 cells subjected to the nab-paclitaxel and solvent-based paclitaxel formulations. Results suggested that the two formulations differentially modulated fatty acid oxidation in the A549 cells. While cell viability results did not reveal significant differences, the findings implied that a mass spectrometry-based cell metabolomics approach could be a sensitive tool to explore the differences caused by formulation changes without using animals. Since uncertainties of products containing nanomaterials warrant holistic screening to address safety concerns, the aforementioned approach may be of regulatory importance and is worth further investigation.
format Online
Article
Text
id pubmed-7931197
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79311972021-03-05 Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics Huang, Jhih-Wei Kuo, Ching-Hua Kuo, Han-Chun Shih, Jin-Yuan Tsai, Teng-Wen Chang, Lin-Chau ACS Omega [Image: see text] The pharmacokinetics, safety, and anticancer efficacy profiles of nanoparticle albumin-bound (nab)-paclitaxel formulations are superior to those of solvent-based paclitaxel formulations. The aims of the present study were to study the effects of nab-paclitaxel and solvent-based paclitaxel formulations on the metabolic profiles of the model cell line (A549) and attempt to elucidate the associated metabolic pathways. A mass spectrometry-based cell metabolomics approach and viability evaluation were used to explore the potential difference. Western blotting was utilized to measure the levels of relevant proteins, and carnitine palmitoyltransferase 1 (CPT1) activities were quantified. Fold changes normalized to controls in levels of carnitine and several acylcarnitines were significantly different (p < 0.05) between A549 cells treated with nab-paclitaxel and those treated with solvent-based paclitaxel. Relative to the controls, there were also significant fold change differences in palmitic and linoleic acid levels in the cell lysates, mitochondrial CPT1 activities, and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD) protein levels in the A549 cells subjected to the nab-paclitaxel and solvent-based paclitaxel formulations. Results suggested that the two formulations differentially modulated fatty acid oxidation in the A549 cells. While cell viability results did not reveal significant differences, the findings implied that a mass spectrometry-based cell metabolomics approach could be a sensitive tool to explore the differences caused by formulation changes without using animals. Since uncertainties of products containing nanomaterials warrant holistic screening to address safety concerns, the aforementioned approach may be of regulatory importance and is worth further investigation. American Chemical Society 2021-02-15 /pmc/articles/PMC7931197/ /pubmed/33681555 http://dx.doi.org/10.1021/acsomega.0c04385 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Huang, Jhih-Wei
Kuo, Ching-Hua
Kuo, Han-Chun
Shih, Jin-Yuan
Tsai, Teng-Wen
Chang, Lin-Chau
Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title_full Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title_fullStr Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title_full_unstemmed Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title_short Differences in Fatty Acid Oxidation between Nab-Paclitaxel- and Solvent-Based Paclitaxel-Treated A549 Cells Based on Metabolomics
title_sort differences in fatty acid oxidation between nab-paclitaxel- and solvent-based paclitaxel-treated a549 cells based on metabolomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931197/
https://www.ncbi.nlm.nih.gov/pubmed/33681555
http://dx.doi.org/10.1021/acsomega.0c04385
work_keys_str_mv AT huangjhihwei differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics
AT kuochinghua differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics
AT kuohanchun differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics
AT shihjinyuan differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics
AT tsaitengwen differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics
AT changlinchau differencesinfattyacidoxidationbetweennabpaclitaxelandsolventbasedpaclitaxeltreateda549cellsbasedonmetabolomics