Cargando…
Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931201/ https://www.ncbi.nlm.nih.gov/pubmed/33471430 http://dx.doi.org/10.1002/2211-5463.13091 |
_version_ | 1783660245394915328 |
---|---|
author | Veres, Balazs Eros, Krisztian Antus, Csenge Kalman, Nikoletta Fonai, Fruzsina Jakus, Peter Balazs Boros, Eva Hegedus, Zoltan Nagy, Istvan Tretter, Laszlo Gallyas, Ferenc Sumegi, Balazs |
author_facet | Veres, Balazs Eros, Krisztian Antus, Csenge Kalman, Nikoletta Fonai, Fruzsina Jakus, Peter Balazs Boros, Eva Hegedus, Zoltan Nagy, Istvan Tretter, Laszlo Gallyas, Ferenc Sumegi, Balazs |
author_sort | Veres, Balazs |
collection | PubMed |
description | Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS‐induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA‐seq) data, Ingenuity(®) Pathway Analysis (IPA (®)) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll‐like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)‐mediated processes in wild‐type mice. The disruption of CypD reduced LPS‐induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO‐ and ROS‐producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear‐ and mitochondrial‐encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD‐dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases. |
format | Online Article Text |
id | pubmed-7931201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79312012021-03-15 Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia Veres, Balazs Eros, Krisztian Antus, Csenge Kalman, Nikoletta Fonai, Fruzsina Jakus, Peter Balazs Boros, Eva Hegedus, Zoltan Nagy, Istvan Tretter, Laszlo Gallyas, Ferenc Sumegi, Balazs FEBS Open Bio Research Articles Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS‐induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA‐seq) data, Ingenuity(®) Pathway Analysis (IPA (®)) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll‐like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)‐mediated processes in wild‐type mice. The disruption of CypD reduced LPS‐induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO‐ and ROS‐producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear‐ and mitochondrial‐encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD‐dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases. John Wiley and Sons Inc. 2021-02-13 /pmc/articles/PMC7931201/ /pubmed/33471430 http://dx.doi.org/10.1002/2211-5463.13091 Text en © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Veres, Balazs Eros, Krisztian Antus, Csenge Kalman, Nikoletta Fonai, Fruzsina Jakus, Peter Balazs Boros, Eva Hegedus, Zoltan Nagy, Istvan Tretter, Laszlo Gallyas, Ferenc Sumegi, Balazs Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title | Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title_full | Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title_fullStr | Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title_full_unstemmed | Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title_short | Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
title_sort | cyclophilin d‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931201/ https://www.ncbi.nlm.nih.gov/pubmed/33471430 http://dx.doi.org/10.1002/2211-5463.13091 |
work_keys_str_mv | AT veresbalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT eroskrisztian cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT antuscsenge cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT kalmannikoletta cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT fonaifruzsina cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT jakuspeterbalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT boroseva cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT hegeduszoltan cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT nagyistvan cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT tretterlaszlo cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT gallyasferenc cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia AT sumegibalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia |