Cargando…

Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia

Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability...

Descripción completa

Detalles Bibliográficos
Autores principales: Veres, Balazs, Eros, Krisztian, Antus, Csenge, Kalman, Nikoletta, Fonai, Fruzsina, Jakus, Peter Balazs, Boros, Eva, Hegedus, Zoltan, Nagy, Istvan, Tretter, Laszlo, Gallyas, Ferenc, Sumegi, Balazs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931201/
https://www.ncbi.nlm.nih.gov/pubmed/33471430
http://dx.doi.org/10.1002/2211-5463.13091
_version_ 1783660245394915328
author Veres, Balazs
Eros, Krisztian
Antus, Csenge
Kalman, Nikoletta
Fonai, Fruzsina
Jakus, Peter Balazs
Boros, Eva
Hegedus, Zoltan
Nagy, Istvan
Tretter, Laszlo
Gallyas, Ferenc
Sumegi, Balazs
author_facet Veres, Balazs
Eros, Krisztian
Antus, Csenge
Kalman, Nikoletta
Fonai, Fruzsina
Jakus, Peter Balazs
Boros, Eva
Hegedus, Zoltan
Nagy, Istvan
Tretter, Laszlo
Gallyas, Ferenc
Sumegi, Balazs
author_sort Veres, Balazs
collection PubMed
description Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS‐induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA‐seq) data, Ingenuity(®) Pathway Analysis (IPA (®)) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll‐like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)‐mediated processes in wild‐type mice. The disruption of CypD reduced LPS‐induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO‐ and ROS‐producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear‐ and mitochondrial‐encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD‐dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.
format Online
Article
Text
id pubmed-7931201
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79312012021-03-15 Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia Veres, Balazs Eros, Krisztian Antus, Csenge Kalman, Nikoletta Fonai, Fruzsina Jakus, Peter Balazs Boros, Eva Hegedus, Zoltan Nagy, Istvan Tretter, Laszlo Gallyas, Ferenc Sumegi, Balazs FEBS Open Bio Research Articles Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram‐negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)‐dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS‐induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA‐seq) data, Ingenuity(®) Pathway Analysis (IPA (®)) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll‐like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)‐mediated processes in wild‐type mice. The disruption of CypD reduced LPS‐induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO‐ and ROS‐producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear‐ and mitochondrial‐encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD‐dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases. John Wiley and Sons Inc. 2021-02-13 /pmc/articles/PMC7931201/ /pubmed/33471430 http://dx.doi.org/10.1002/2211-5463.13091 Text en © 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Veres, Balazs
Eros, Krisztian
Antus, Csenge
Kalman, Nikoletta
Fonai, Fruzsina
Jakus, Peter Balazs
Boros, Eva
Hegedus, Zoltan
Nagy, Istvan
Tretter, Laszlo
Gallyas, Ferenc
Sumegi, Balazs
Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title_full Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title_fullStr Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title_full_unstemmed Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title_short Cyclophilin D‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
title_sort cyclophilin d‐dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931201/
https://www.ncbi.nlm.nih.gov/pubmed/33471430
http://dx.doi.org/10.1002/2211-5463.13091
work_keys_str_mv AT veresbalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT eroskrisztian cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT antuscsenge cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT kalmannikoletta cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT fonaifruzsina cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT jakuspeterbalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT boroseva cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT hegeduszoltan cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT nagyistvan cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT tretterlaszlo cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT gallyasferenc cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia
AT sumegibalazs cyclophilinddependentmitochondrialpermeabilitytransitionamplifiesinflammatoryreprogramminginendotoxemia