Cargando…

Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands

[Image: see text] Soil microorganisms can be altered by plant invasion into wetland ecosystems and comprise an important linkage between phosphorus (P) availability and soil carbon (C) chemistry; however, the intrinsic mechanisms of P and C transformation associated with microbial community and func...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lei, Yuan, Jiahui, Wang, Yu, Butterly, Clayton R., Tong, Deli, Zhou, Bo, Li, Xiuzhen, Zhang, Huabin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931372/
https://www.ncbi.nlm.nih.gov/pubmed/33681612
http://dx.doi.org/10.1021/acsomega.0c06161
_version_ 1783660278525722624
author Wang, Lei
Yuan, Jiahui
Wang, Yu
Butterly, Clayton R.
Tong, Deli
Zhou, Bo
Li, Xiuzhen
Zhang, Huabin
author_facet Wang, Lei
Yuan, Jiahui
Wang, Yu
Butterly, Clayton R.
Tong, Deli
Zhou, Bo
Li, Xiuzhen
Zhang, Huabin
author_sort Wang, Lei
collection PubMed
description [Image: see text] Soil microorganisms can be altered by plant invasion into wetland ecosystems and comprise an important linkage between phosphorus (P) availability and soil carbon (C) chemistry; however, the intrinsic mechanisms of P and C transformation associated with microbial community and function are poorly understood in coastal wetland. In this study, we used a sequential fractionation method and (13)C nuclear magnetic resonance (NMR) spectroscopy to capture the changes in soil P pools and C chemical composition with bare flats (BF), native Phragmites australis(PA), and invasive Spartina alterniflora(SA), respectively. The responses of the soil microbial community using phospholipid fatty acid (PLFA) profiling and function indicated by nine enzyme activities associated with C, nitrogen (N), and P cycles were also investigated. Compared to PA and BF, SA invasion significantly (P < 0.05) changed P pools and mainly increased the available P by 17.5 and 37.0%, respectively. The presence of the plants (SA and PA) significantly (P < 0.05) altered the soil C chemical composition mainly by affecting the aliphatic functional groups, resulting in a lower alkyl C/O-alkyl C ratio value. Compared to BF and SA, PA significantly (P < 0.05) increased arbuscular mycorrhizal fungi (AMF) abundance. Soil enzyme activity, especially for the P and C cycle enzymes, was also affected by plant species with the highest geometric mean enzyme and hydrolase activity for the PA zone. We also found that soil C compositions and P pools were associated with microbial community structure and enzyme activity, respectively. However, little interaction between C and P was found on either soil microbial composition or soil enzyme activity variation. Further, microbial community composition was tightly correlated with the soil P compared to soil C chemistry, while enzyme activity showed more response with soil C chemistry compared to soil P pool changes.
format Online
Article
Text
id pubmed-7931372
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79313722021-03-05 Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands Wang, Lei Yuan, Jiahui Wang, Yu Butterly, Clayton R. Tong, Deli Zhou, Bo Li, Xiuzhen Zhang, Huabin ACS Omega [Image: see text] Soil microorganisms can be altered by plant invasion into wetland ecosystems and comprise an important linkage between phosphorus (P) availability and soil carbon (C) chemistry; however, the intrinsic mechanisms of P and C transformation associated with microbial community and function are poorly understood in coastal wetland. In this study, we used a sequential fractionation method and (13)C nuclear magnetic resonance (NMR) spectroscopy to capture the changes in soil P pools and C chemical composition with bare flats (BF), native Phragmites australis(PA), and invasive Spartina alterniflora(SA), respectively. The responses of the soil microbial community using phospholipid fatty acid (PLFA) profiling and function indicated by nine enzyme activities associated with C, nitrogen (N), and P cycles were also investigated. Compared to PA and BF, SA invasion significantly (P < 0.05) changed P pools and mainly increased the available P by 17.5 and 37.0%, respectively. The presence of the plants (SA and PA) significantly (P < 0.05) altered the soil C chemical composition mainly by affecting the aliphatic functional groups, resulting in a lower alkyl C/O-alkyl C ratio value. Compared to BF and SA, PA significantly (P < 0.05) increased arbuscular mycorrhizal fungi (AMF) abundance. Soil enzyme activity, especially for the P and C cycle enzymes, was also affected by plant species with the highest geometric mean enzyme and hydrolase activity for the PA zone. We also found that soil C compositions and P pools were associated with microbial community structure and enzyme activity, respectively. However, little interaction between C and P was found on either soil microbial composition or soil enzyme activity variation. Further, microbial community composition was tightly correlated with the soil P compared to soil C chemistry, while enzyme activity showed more response with soil C chemistry compared to soil P pool changes. American Chemical Society 2021-02-13 /pmc/articles/PMC7931372/ /pubmed/33681612 http://dx.doi.org/10.1021/acsomega.0c06161 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Wang, Lei
Yuan, Jiahui
Wang, Yu
Butterly, Clayton R.
Tong, Deli
Zhou, Bo
Li, Xiuzhen
Zhang, Huabin
Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title_full Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title_fullStr Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title_full_unstemmed Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title_short Effects of Exotic Spartina alterniflora Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands
title_sort effects of exotic spartina alterniflora invasion on soil phosphorus and carbon pools and associated soil microbial community composition in coastal wetlands
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931372/
https://www.ncbi.nlm.nih.gov/pubmed/33681612
http://dx.doi.org/10.1021/acsomega.0c06161
work_keys_str_mv AT wanglei effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT yuanjiahui effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT wangyu effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT butterlyclaytonr effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT tongdeli effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT zhoubo effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT lixiuzhen effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands
AT zhanghuabin effectsofexoticspartinaalterniflorainvasiononsoilphosphorusandcarbonpoolsandassociatedsoilmicrobialcommunitycompositionincoastalwetlands