Cargando…

Construction of Self-Assembled Polyelectrolyte/Cationic Microgel Multilayers and Their Interaction with Anionic Dyes Using Quartz Crystal Microbalance and Atomic Force Microscopy

[Image: see text] This study aimed to reveal the interaction between self-assembled multilayers and dye molecules in the environment, which is closely related to the multilayers’ stable performance and service life. In this work, the pH-responsive poly (N-isopropylacrylamide-co-2-(dimethylamino) eth...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yinqiu, Zhang, Yang, Wang, Kailun, Luo, Zili, Xue, Zhiyu, Gao, Hongxin, Cao, Zheng, Cheng, Junfeng, Liu, Chunlin, Zhang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931438/
https://www.ncbi.nlm.nih.gov/pubmed/33681615
http://dx.doi.org/10.1021/acsomega.0c06181
Descripción
Sumario:[Image: see text] This study aimed to reveal the interaction between self-assembled multilayers and dye molecules in the environment, which is closely related to the multilayers’ stable performance and service life. In this work, the pH-responsive poly (N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) microgels were prepared by free-radical copolymerization and self-assembled with sodium alginate (SA) into multilayers by the layer-by-layer deposition method. Quartz crystal microbalance (QCM) and atomic force microscopy (AFM) results confirmed the construction of multilayers and the absorbed mass, resulting in a decrease in the frequency shift of the QCM sensor and the deposition of microgel particles on its surface. The interaction between the self-assembled SA/microgel multilayers and anionic dyes in the aqueous solution was further investigated by QCM, and it was found that the electrostatic attraction between dyes and microgels deposited on the QCM sensor surface was much larger than that of the microgels with SA in multilayers, leading to the release of the microgels from the self-assembled structure and a mass loss ratio of 27.6%. AFM observation of the multilayer morphology exposed to dyes showed that 29% of the microgels was peeled off, and the corresponding microgel imprints were generated on the surface. In contrast, the shape and size of the remaining self-assembled microgel particles did not change.