Cargando…
MB-GAN: Microbiome Simulation via Generative Adversarial Network
BACKGROUND: Trillions of microbes inhabit the human body and have a profound effect on human health. The recent development of metagenome-wide association studies and other quantitative analysis methods accelerate the discovery of the associations between human microbiome and diseases. To assess the...
Autores principales: | Rong, Ruichen, Jiang, Shuang, Xu, Lin, Xiao, Guanghua, Xie, Yang, Liu, Dajiang J, Li, Qiwei, Zhan, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931821/ https://www.ncbi.nlm.nih.gov/pubmed/33543271 http://dx.doi.org/10.1093/gigascience/giab005 |
Ejemplares similares
-
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
HARMONIES: A Hybrid Approach for Microbiome Networks Inference via Exploiting Sparsity
por: Jiang, Shuang, et al.
Publicado: (2020) -
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020)