Cargando…
R*-Grove: Balanced Spatial Partitioning for Large-Scale Datasets
The rapid growth of big spatial data urged the research community to develop several big spatial data systems. Regardless of their architecture, one of the fundamental requirements of all these systems is to spatially partition the data efficiently across machines. The core challenges of big spatial...
Autores principales: | Vu, Tin, Eldawy, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931855/ https://www.ncbi.nlm.nih.gov/pubmed/33693401 http://dx.doi.org/10.3389/fdata.2020.00028 |
Ejemplares similares
-
CRMnet: A deep learning model for predicting gene expression from large regulatory sequence datasets
por: Ding, Ke, et al.
Publicado: (2023) -
Improving Diagnosis of Depression With XGBOOST Machine Learning Model and a Large Biomarkers Dutch Dataset (n = 11,081)
por: Sharma, Amita, et al.
Publicado: (2020) -
Boosting Face Presentation Attack Detection in Multi-Spectral Videos Through Score Fusion of Wavelet Partition Images
por: Agarwal, Akshay, et al.
Publicado: (2022) -
North-south scientific collaborations on research datasets: a longitudinal analysis of the division of labor on genomic datasets (1992–2021)
por: Bratt, Sarah, et al.
Publicado: (2023) -
Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series
por: De Stefani, Jacopo, et al.
Publicado: (2021)