Cargando…
Monitoring Crop Status in the Continental United States Using the SMAP Level-4 Carbon Product
Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an oppo...
Autores principales: | Wurster, Patrick M., Maneta, Marco, Kimball, John S., Endsley, K. Arthur, Beguería, Santiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931861/ https://www.ncbi.nlm.nih.gov/pubmed/33693422 http://dx.doi.org/10.3389/fdata.2020.597720 |
Ejemplares similares
-
DroughtCast: A Machine Learning Forecast of the United States Drought Monitor
por: Brust, Colin, et al.
Publicado: (2021) -
Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model
por: Mladenova, Iliana E., et al.
Publicado: (2020) -
Qualitative crop condition survey reveals spatiotemporal production patterns and allows early yield prediction
por: Beguería, Santiago, et al.
Publicado: (2020) -
Deep Learning Optimizes Data-Driven Representation of Soil Organic Carbon in Earth System Model Over the Conterminous United States
por: Tao, Feng, et al.
Publicado: (2020) -
Testing a Generalizable Machine Learning Workflow for Aquatic Invasive Species on Rainbow Trout (Oncorhynchus mykiss) in Northwest Montana
por: Carter, S., et al.
Publicado: (2021)