Cargando…
Accelerating Physics-Based Simulations Using End-to-End Neural Network Proxies: An Application in Oil Reservoir Modeling
We develop a proxy model based on deep learning methods to accelerate the simulations of oil reservoirs–by three orders of magnitude–compared to industry-strength physics-based PDE solvers. This paper describes a new architectural approach to this task modeling a simulator as an end-to-end black box...
Autores principales: | Navrátil, Jiří, King, Alan, Rios, Jesus, Kollias, Georgios, Torrado, Ruben, Codas, Andrés |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931866/ https://www.ncbi.nlm.nih.gov/pubmed/33693356 http://dx.doi.org/10.3389/fdata.2019.00033 |
Ejemplares similares
-
Usability of End-to-End Encryption in E-Mail Communication
por: Reuter, Adrian, et al.
Publicado: (2021) -
The semi-automatic classification of an open-ended question on panel survey motivation and its application in attrition analysis
por: Haensch, Anna-Carolina, et al.
Publicado: (2022) -
What Do You Think About Your Company’s Leaks? A Survey on End-Users Perception Toward Data Leakage Mechanisms
por: Bertrand, Yoann, et al.
Publicado: (2020) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
por: Wang, Michael, et al.
Publicado: (2021)