Cargando…
Attending Over Triads for Learning Signed Network Embedding
Network embedding, which aims at learning distributed representations for nodes in networks, is a critical task with wide downstream applications. Most existing studies focus on networks with a single type of edges, whereas in many cases, the edges of networks can be derived from two opposite relati...
Autores principales: | Sodhani, Shagun, Qu, Meng, Tang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931872/ https://www.ncbi.nlm.nih.gov/pubmed/33693329 http://dx.doi.org/10.3389/fdata.2019.00006 |
Ejemplares similares
-
Unsupervised Word Embedding Learning by Incorporating Local and Global Contexts
por: Meng, Yu, et al.
Publicado: (2020) -
Proximity-Based Compression for Network Embedding
por: Islam, Muhammad Ifte, et al.
Publicado: (2021) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
PME: pruning-based multi-size embedding for recommender systems
por: Liu, Zirui, et al.
Publicado: (2023) -
Deep Representation Learning for Social Network Analysis
por: Tan, Qiaoyu, et al.
Publicado: (2019)