Cargando…
Proximity-Based Compression for Network Embedding
Network embedding that encodes structural information of graphs into a low-dimensional vector space has been proven to be essential for network analysis applications, including node classification and community detection. Although recent methods show promising performance for various applications, g...
Autores principales: | Islam, Muhammad Ifte, Tanvir, Farhan, Johnson, Ginger, Akbas, Esra, Aktas, Mehmet Emin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931879/ https://www.ncbi.nlm.nih.gov/pubmed/33693427 http://dx.doi.org/10.3389/fdata.2020.608043 |
Ejemplares similares
-
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
Attending Over Triads for Learning Signed Network Embedding
por: Sodhani, Shagun, et al.
Publicado: (2019) -
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
por: Abbasi-Asl, Reza, et al.
Publicado: (2021) -
MedGraph: A semantic biomedical information retrieval framework using knowledge graph embedding for PubMed
por: Ebeid, Islam Akef
Publicado: (2022) -
Kernel-wise difference minimization for convolutional neural network compression in metaverse
por: Chang, Yi-Ting
Publicado: (2023)