Cargando…
On Robustness of Neural Architecture Search Under Label Noise
Neural architecture search (NAS), which aims at automatically seeking proper neural architectures given a specific task, has attracted extensive attention recently in supervised learning applications. In most real-world situations, the class labels provided in the training data would be noisy due to...
Autores principales: | Chen, Yi-Wei, Song, Qingquan, Liu, Xi, Sastry, P. S., Hu, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931895/ https://www.ncbi.nlm.nih.gov/pubmed/33693377 http://dx.doi.org/10.3389/fdata.2020.00002 |
Ejemplares similares
-
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures
por: Kaushik, Shruti, et al.
Publicado: (2020) -
PME: pruning-based multi-size embedding for recommender systems
por: Liu, Zirui, et al.
Publicado: (2023) -
Robust Machine Learning for Colorectal Cancer Risk Prediction and Stratification
por: Nartowt, Bradley J., et al.
Publicado: (2020) -
Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
por: Wang, Siyu, et al.
Publicado: (2022)