Cargando…
The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions
Purpose: Our work introduces a highly accurate, safe, and sufficiently explicable machine-learning (artificial intelligence) model of intraocular lens power (IOL) translating into better post-surgical outcomes for patients with cataracts. We also demonstrate its improved predictive accuracy over pre...
Autores principales: | Clarke, Gerald P., Kapelner, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931896/ https://www.ncbi.nlm.nih.gov/pubmed/33693417 http://dx.doi.org/10.3389/fdata.2020.572134 |
Ejemplares similares
-
Editorial: Safe and Trustworthy Machine Learning
por: Kailkhura, Bhavya, et al.
Publicado: (2021) -
Editorial: ML and AI Safety, Effectiveness and Explainability in Healthcare
por: Benrimoh, David, et al.
Publicado: (2021) -
Evaluating the Effectiveness of Personalized Medicine With Software
por: Kapelner, Adam, et al.
Publicado: (2021) -
Editorial: Bayesian Inference and AI
por: Tang, Niansheng, et al.
Publicado: (2022) -
Editorial: Big Data and machine learning in cancer theranostics
por: da Silva, Fabricio Alves Barbosa, et al.
Publicado: (2022)