Cargando…
Deep Learning Optimizes Data-Driven Representation of Soil Organic Carbon in Earth System Model Over the Conterminous United States
Soil organic carbon (SOC) is a key component of the global carbon cycle, yet it is not well-represented in Earth system models to accurately predict global carbon dynamics in response to climate change. This novel study integrated deep learning, data assimilation, 25,444 vertical soil profiles, and...
Autores principales: | Tao, Feng, Zhou, Zhenghu, Huang, Yuanyuan, Li, Qianyu, Lu, Xingjie, Ma, Shuang, Huang, Xiaomeng, Liang, Yishuang, Hugelius, Gustaf, Jiang, Lifen, Doughty, Russell, Ren, Zhehao, Luo, Yiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931903/ https://www.ncbi.nlm.nih.gov/pubmed/33693391 http://dx.doi.org/10.3389/fdata.2020.00017 |
Ejemplares similares
-
Deep Representation Learning for Social Network Analysis
por: Tan, Qiaoyu, et al.
Publicado: (2019) -
Unified Representation of Twitter and Online News Using Graph and Entities
por: Syed, Munira, et al.
Publicado: (2021) -
Benchmarking of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere
por: Huang, Yiyi, et al.
Publicado: (2021) -
Considerations for a More Ethical Approach to Data in AI: On Data Representation and Infrastructure
por: Baird, Alice, et al.
Publicado: (2020) -
Ki-Cook: clustering multimodal cooking representations through knowledge-infused learning
por: Venkataramanan, Revathy, et al.
Publicado: (2023)