Cargando…
Location Prediction for Tweets
Geographic information provides an important insight into many data mining and social media systems. However, users are reluctant to provide such information due to various concerns, such as inconvenience, privacy, etc. In this paper, we aim to develop a deep learning based solution to predict geogr...
Autores principales: | Huang, Chieh-Yang, Tong, Hanghang, He, Jingrui, Maciejewski, Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931908/ https://www.ncbi.nlm.nih.gov/pubmed/33693328 http://dx.doi.org/10.3389/fdata.2019.00005 |
Ejemplares similares
-
Automated Detection of Vaping-Related Tweets on Twitter During the 2019 EVALI Outbreak Using Machine Learning Classification
por: Ren, Yang, et al.
Publicado: (2022) -
Moral Expressions in 280 Characters or Less: An Analysis of Politician Tweets Following the 2016 Brexit Referendum Vote
por: van Vliet, Livia
Publicado: (2021) -
Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future
por: Fu, Dongqi, et al.
Publicado: (2022) -
Dynamic transfer learning with progressive meta-task scheduler
por: Wu, Jun, et al.
Publicado: (2022) -
Misc-GAN: A Multi-scale Generative Model for Graphs
por: Zhou, Dawei, et al.
Publicado: (2019)