Cargando…
Misc-GAN: A Multi-scale Generative Model for Graphs
Characterizing and modeling the distribution of a particular family of graphs are essential for the studying real-world networks in a broad spectrum of disciplines, ranging from market-basket analysis to biology, from social science to neuroscience. However, it is unclear how to model these complex...
Autores principales: | Zhou, Dawei, Zheng, Lecheng, Xu, Jiejun, He, Jingrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931912/ https://www.ncbi.nlm.nih.gov/pubmed/33693326 http://dx.doi.org/10.3389/fdata.2019.00003 |
Ejemplares similares
-
Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future
por: Fu, Dongqi, et al.
Publicado: (2022) -
Scaling Graph Propagation Kernels for Predictive Learning
por: Vijayan, Priyesh, et al.
Publicado: (2022) -
Fast GPU-Based Generation of Large Graph Networks From Degree Distributions
por: Alam, Maksudul, et al.
Publicado: (2021) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021)