Cargando…
The Agile Deployment of Machine Learning Models in Healthcare
The continuous delivery of applied machine learning models in healthcare is often hampered by the existence of isolated product deployments with poorly developed architectures and limited or non-existent maintenance plans. For example, actuarial models in healthcare are often trained in total separa...
Autores principales: | Jackson, Stuart, Yaqub, Maha, Li, Cheng-Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931926/ https://www.ncbi.nlm.nih.gov/pubmed/33693323 http://dx.doi.org/10.3389/fdata.2018.00007 |
Ejemplares similares
-
Deploying machine learning with messy, real world data in low- and middle-income countries: Developing a global health use case
por: Finnegan, Amy, et al.
Publicado: (2022) -
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach
por: Kolyshkina, Inna, et al.
Publicado: (2021) -
Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security
por: Qayyum, Adnan, et al.
Publicado: (2020) -
Editorial: Safe and Trustworthy Machine Learning
por: Kailkhura, Bhavya, et al.
Publicado: (2021) -
Principles and Practice of Explainable Machine Learning
por: Belle, Vaishak, et al.
Publicado: (2021)