Cargando…

Causal Learning From Predictive Modeling for Observational Data

We consider the problem of learning structured causal models from observational data. In this work, we use causal Bayesian networks to represent causal relationships among model variables. To this effect, we explore the use of two types of independencies—context-specific independence (CSI) and mutua...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramanan, Nandini, Natarajan, Sriraam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931928/
https://www.ncbi.nlm.nih.gov/pubmed/33693412
http://dx.doi.org/10.3389/fdata.2020.535976
Descripción
Sumario:We consider the problem of learning structured causal models from observational data. In this work, we use causal Bayesian networks to represent causal relationships among model variables. To this effect, we explore the use of two types of independencies—context-specific independence (CSI) and mutual independence (MI). We use CSI to identify the candidate set of causal relationships and then use MI to quantify their strengths and construct a causal model. We validate the learned models on benchmark networks and demonstrate the effectiveness when compared to some of the state-of-the-art Causal Bayesian Network Learning algorithms from observational Data.