Cargando…
Causal Learning From Predictive Modeling for Observational Data
We consider the problem of learning structured causal models from observational data. In this work, we use causal Bayesian networks to represent causal relationships among model variables. To this effect, we explore the use of two types of independencies—context-specific independence (CSI) and mutua...
Autores principales: | Ramanan, Nandini, Natarajan, Sriraam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931928/ https://www.ncbi.nlm.nih.gov/pubmed/33693412 http://dx.doi.org/10.3389/fdata.2020.535976 |
Ejemplares similares
-
Benchmarking of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere
por: Huang, Yiyi, et al.
Publicado: (2021) -
Algorithmic Accountability in Context. Socio-Technical Perspectives on Structural Causal Models
por: Poechhacker, Nikolaus, et al.
Publicado: (2021) -
Modeling information diffusion in social media: data-driven observations
por: Iamnitchi, Adriana, et al.
Publicado: (2023) -
Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations
por: Fang, Li, et al.
Publicado: (2022) -
The Causal Fairness Field Guide: Perspectives From Social and Formal Sciences
por: Carey, Alycia N., et al.
Publicado: (2022)