Cargando…
You Can't See Me: Anonymizing Graphs Using the Szemerédi Regularity Lemma
Complex networks gathered from our online interactions provide a rich source of information that can be used to try to model and predict our behavior. While this has very tangible benefits that we have all grown accustomed to, there is a concrete privacy risk in sharing potentially sensitive data ab...
Autores principales: | Foffano, Daniele, Rossi, Luca, Torsello, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931930/ https://www.ncbi.nlm.nih.gov/pubmed/33693330 http://dx.doi.org/10.3389/fdata.2019.00007 |
Ejemplares similares
-
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
If You Can’t See It, You Can’t Be It: Mentorship for Female Internal Medicine Residents
por: Chandra, Neha V., et al.
Publicado: (2020) -
A Framework for Contractual Graphs
por: Murimi, Renita M.
Publicado: (2021) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021)