Cargando…
Deep Representation Learning for Social Network Analysis
Social network analysis is an important problem in data mining. A fundamental step for analyzing social networks is to encode network data into low-dimensional representations, i.e., network embeddings, so that the network topology structure and other attribute information can be effectively preserv...
Autores principales: | Tan, Qiaoyu, Liu, Ninghao, Hu, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931936/ https://www.ncbi.nlm.nih.gov/pubmed/33693325 http://dx.doi.org/10.3389/fdata.2019.00002 |
Ejemplares similares
-
Deep Learning Exploration of Agent-Based Social Network Model Parameters
por: Murase, Yohsuke, et al.
Publicado: (2021) -
Defense Against Explanation Manipulation
por: Tang, Ruixiang, et al.
Publicado: (2022) -
Towards Semantically-Rich Spatial Network Representation Learning via Automated Feature Topic Pairing
por: Wang, Dongjie, et al.
Publicado: (2021) -
Deep Learning Optimizes Data-Driven Representation of Soil Organic Carbon in Earth System Model Over the Conterminous United States
por: Tao, Feng, et al.
Publicado: (2020) -
SemNet: Learning semantic attributes for human activity recognition with deep belief networks
por: Venkatachalam, Shanmuga, et al.
Publicado: (2022)