Cargando…
Identifying Clinical and Genomic Features Associated With Chronic Kidney Disease
We apply a pattern-based classification method to identify clinical and genomic features associated with the progression of Chronic Kidney disease (CKD). We analyze the African-American Study of Chronic Kidney disease with Hypertension dataset and construct a decision-tree classification model, cons...
Autores principales: | Moreno, M. Megan, Bain, Travaughn C., Moreno, Melissa S., Carroll, Katherine C., Cunningham, Emily R., Ashton, Zoe, Poteau, Roby, Subasi, Ersoy, Lipkowitz, Michael, Subasi, Munevver Mine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931938/ https://www.ncbi.nlm.nih.gov/pubmed/33693411 http://dx.doi.org/10.3389/fdata.2020.528828 |
Ejemplares similares
-
A Classification Model to Predict the Rate of Decline of Kidney Function
por: Subasi, Ersoy, et al.
Publicado: (2017) -
Identification of Prognostic Biomarker Candidates Associated With Melanoma Using High-Dimensional Genomic Data
por: Kutt, Brody, et al.
Publicado: (2021) -
An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning
por: Ozyurt, Fatih, et al.
Publicado: (2021) -
LEDPatNet19: Automated Emotion Recognition Model based on Nonlinear LED Pattern Feature Extraction Function using EEG Signals
por: Tuncer, Turker, et al.
Publicado: (2021) -
Practical guide for biomedical signals analysis using machine learning techniques: a MATLAB based approach
por: Subasi, Abdulhamit
Publicado: (2019)