Cargando…
DeepEmSat: Deep Emulation for Satellite Data Mining
The growing volume of Earth science data available from climate simulations and satellite remote sensing offers unprecedented opportunity for scientific insight, while also presenting computational challenges. One potential area of impact is atmospheric correction, where physics-based numerical mode...
Autores principales: | Duffy, Kate, Vandal, Thomas, Li, Shuang, Ganguly, Sangram, Nemani, Ramakrishna, Ganguly, Auroop R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931958/ https://www.ncbi.nlm.nih.gov/pubmed/33693365 http://dx.doi.org/10.3389/fdata.2019.00042 |
Ejemplares similares
-
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning
por: Galassi, Andrea, et al.
Publicado: (2020) -
Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations
por: Donahue, Kellen, et al.
Publicado: (2023) -
Statistical Emulation of Neural Simulators: Application to Neocortical L2/3 Large Basket Cells
por: Shapira, Gilad, et al.
Publicado: (2022) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Deep Neural Networks for Optimal Team Composition
por: Sapienza, Anna, et al.
Publicado: (2019)