Cargando…
Attention based GRU-LSTM for software defect prediction
Software defect prediction (SDP) can be used to produce reliable, high-quality software. The current SDP is practiced on program granular components (such as file level, class level, or function level), which cannot accurately predict failures. To solve this problem, we propose a new framework calle...
Autores principales: | Munir, Hafiz Shahbaz, Ren, Shengbing, Mustafa, Mubashar, Siddique, Chaudry Naeem, Qayyum, Shazib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932164/ https://www.ncbi.nlm.nih.gov/pubmed/33661985 http://dx.doi.org/10.1371/journal.pone.0247444 |
Ejemplares similares
-
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks
por: Mahjoub, Sameh, et al.
Publicado: (2022) -
Prediction of outpatients with conjunctivitis in Xinjiang based on LSTM and GRU models
por: Wang, Yijia, et al.
Publicado: (2023) -
An LSTM and GRU based trading strategy adapted to the Moroccan market
por: Touzani, Yassine, et al.
Publicado: (2021) -
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023)