Cargando…
Learning temporal attention in dynamic graphs with bilinear interactions
Reasoning about graphs evolving over time is a challenging concept in many domains, such as bioinformatics, physics, and social networks. We consider a common case in which edges can be short term interactions (e.g., messaging) or long term structural connections (e.g., friendship). In practice, lon...
Autores principales: | Knyazev, Boris, Augusta, Carolyn, Taylor, Graham W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932168/ https://www.ncbi.nlm.nih.gov/pubmed/33661968 http://dx.doi.org/10.1371/journal.pone.0247936 |
Ejemplares similares
-
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020) -
Drug–target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization
por: Sorkhi, Ali Ghanbari, et al.
Publicado: (2021) -
Deep Modular Bilinear Attention Network for Visual Question Answering
por: Yan, Feng, et al.
Publicado: (2022) -
Histopathological Tissue Segmentation of Lung Cancer with Bilinear CNN and Soft Attention
por: Xu, Rui, et al.
Publicado: (2022) -
Bilinear Control Systems
por: Elliott, David
Publicado: (2009)