Cargando…

Development and validation of a predictive model of in-hospital mortality in COVID-19 patients

We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hyperten...

Descripción completa

Detalles Bibliográficos
Autores principales: Velasco-Rodríguez, Diego, Alonso-Dominguez, Juan-Manuel, Vidal Laso, Rosa, Lainez-González, Daniel, García-Raso, Aránzazu, Martín-Herrero, Sara, Herrero, Antonio, Martínez Alfonzo, Inés, Serrano-López, Juana, Jiménez-Barral, Elena, Nistal, Sara, Pérez Márquez, Manuel, Askari, Elham, Castillo Álvarez, Jorge, Núñez, Antonio, Jiménez Rodríguez, Ángel, Heili-Frades, Sarah, Pérez-Calvo, César, Górgolas, Miguel, Barba, Raquel, Llamas-Sillero, Pilar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932507/
https://www.ncbi.nlm.nih.gov/pubmed/33661939
http://dx.doi.org/10.1371/journal.pone.0247676
_version_ 1783660434688049152
author Velasco-Rodríguez, Diego
Alonso-Dominguez, Juan-Manuel
Vidal Laso, Rosa
Lainez-González, Daniel
García-Raso, Aránzazu
Martín-Herrero, Sara
Herrero, Antonio
Martínez Alfonzo, Inés
Serrano-López, Juana
Jiménez-Barral, Elena
Nistal, Sara
Pérez Márquez, Manuel
Askari, Elham
Castillo Álvarez, Jorge
Núñez, Antonio
Jiménez Rodríguez, Ángel
Heili-Frades, Sarah
Pérez-Calvo, César
Górgolas, Miguel
Barba, Raquel
Llamas-Sillero, Pilar
author_facet Velasco-Rodríguez, Diego
Alonso-Dominguez, Juan-Manuel
Vidal Laso, Rosa
Lainez-González, Daniel
García-Raso, Aránzazu
Martín-Herrero, Sara
Herrero, Antonio
Martínez Alfonzo, Inés
Serrano-López, Juana
Jiménez-Barral, Elena
Nistal, Sara
Pérez Márquez, Manuel
Askari, Elham
Castillo Álvarez, Jorge
Núñez, Antonio
Jiménez Rodríguez, Ángel
Heili-Frades, Sarah
Pérez-Calvo, César
Górgolas, Miguel
Barba, Raquel
Llamas-Sillero, Pilar
author_sort Velasco-Rodríguez, Diego
collection PubMed
description We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was tested by a multivariate logistic regression, and a predictive model was created, with further validation in an independent sample. A total of 2070 hospitalized COVID-19 patients were finally included in the multivariable analysis. Age 61–70 years (p<0.001; OR: 7.69; 95%CI: 2.93 to 20.14), age 71–80 years (p<0.001; OR: 14.99; 95%CI: 5.88 to 38.22), age >80 years (p<0.001; OR: 36.78; 95%CI: 14.42 to 93.85), male gender (p<0.001; OR: 1.84; 95%CI: 1.31 to 2.58), D-dimer levels >2 ULN (p = 0.003; OR: 1.79; 95%CI: 1.22 to 2.62), and prolonged PT (p<0.001; OR: 2.18; 95%CI: 1.49 to 3.18) were independently associated with increased in-hospital mortality. A predictive model performed with these parameters showed an AUC of 0.81 in the development cohort (n = 1270) [sensitivity of 95.83%, specificity of 41.46%, negative predictive value of 98.01%, and positive predictive value of 24.85%]. These results were then validated in an independent data sample (n = 800). Our predictive model of in-hospital mortality of COVID-19 patients has been developed, calibrated and validated. The model (MRS-COVID) included age, male gender, and on-admission coagulopathy markers as positively correlated factors with fatal outcome.
format Online
Article
Text
id pubmed-7932507
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79325072021-03-15 Development and validation of a predictive model of in-hospital mortality in COVID-19 patients Velasco-Rodríguez, Diego Alonso-Dominguez, Juan-Manuel Vidal Laso, Rosa Lainez-González, Daniel García-Raso, Aránzazu Martín-Herrero, Sara Herrero, Antonio Martínez Alfonzo, Inés Serrano-López, Juana Jiménez-Barral, Elena Nistal, Sara Pérez Márquez, Manuel Askari, Elham Castillo Álvarez, Jorge Núñez, Antonio Jiménez Rodríguez, Ángel Heili-Frades, Sarah Pérez-Calvo, César Górgolas, Miguel Barba, Raquel Llamas-Sillero, Pilar PLoS One Research Article We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was tested by a multivariate logistic regression, and a predictive model was created, with further validation in an independent sample. A total of 2070 hospitalized COVID-19 patients were finally included in the multivariable analysis. Age 61–70 years (p<0.001; OR: 7.69; 95%CI: 2.93 to 20.14), age 71–80 years (p<0.001; OR: 14.99; 95%CI: 5.88 to 38.22), age >80 years (p<0.001; OR: 36.78; 95%CI: 14.42 to 93.85), male gender (p<0.001; OR: 1.84; 95%CI: 1.31 to 2.58), D-dimer levels >2 ULN (p = 0.003; OR: 1.79; 95%CI: 1.22 to 2.62), and prolonged PT (p<0.001; OR: 2.18; 95%CI: 1.49 to 3.18) were independently associated with increased in-hospital mortality. A predictive model performed with these parameters showed an AUC of 0.81 in the development cohort (n = 1270) [sensitivity of 95.83%, specificity of 41.46%, negative predictive value of 98.01%, and positive predictive value of 24.85%]. These results were then validated in an independent data sample (n = 800). Our predictive model of in-hospital mortality of COVID-19 patients has been developed, calibrated and validated. The model (MRS-COVID) included age, male gender, and on-admission coagulopathy markers as positively correlated factors with fatal outcome. Public Library of Science 2021-03-04 /pmc/articles/PMC7932507/ /pubmed/33661939 http://dx.doi.org/10.1371/journal.pone.0247676 Text en © 2021 Velasco-Rodríguez et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Velasco-Rodríguez, Diego
Alonso-Dominguez, Juan-Manuel
Vidal Laso, Rosa
Lainez-González, Daniel
García-Raso, Aránzazu
Martín-Herrero, Sara
Herrero, Antonio
Martínez Alfonzo, Inés
Serrano-López, Juana
Jiménez-Barral, Elena
Nistal, Sara
Pérez Márquez, Manuel
Askari, Elham
Castillo Álvarez, Jorge
Núñez, Antonio
Jiménez Rodríguez, Ángel
Heili-Frades, Sarah
Pérez-Calvo, César
Górgolas, Miguel
Barba, Raquel
Llamas-Sillero, Pilar
Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title_full Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title_fullStr Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title_full_unstemmed Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title_short Development and validation of a predictive model of in-hospital mortality in COVID-19 patients
title_sort development and validation of a predictive model of in-hospital mortality in covid-19 patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932507/
https://www.ncbi.nlm.nih.gov/pubmed/33661939
http://dx.doi.org/10.1371/journal.pone.0247676
work_keys_str_mv AT velascorodriguezdiego developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT alonsodominguezjuanmanuel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT vidallasorosa developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT lainezgonzalezdaniel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT garciarasoaranzazu developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT martinherrerosara developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT herreroantonio developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT martinezalfonzoines developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT serranolopezjuana developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT jimenezbarralelena developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT nistalsara developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT perezmarquezmanuel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT askarielham developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT castilloalvarezjorge developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT nunezantonio developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT jimenezrodriguezangel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT heilifradessarah developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT perezcalvocesar developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT gorgolasmiguel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT barbaraquel developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients
AT llamassilleropilar developmentandvalidationofapredictivemodelofinhospitalmortalityincovid19patients