Cargando…
Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection
Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. I...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932513/ https://www.ncbi.nlm.nih.gov/pubmed/33617526 http://dx.doi.org/10.1371/journal.pcbi.1008782 |
_version_ | 1783660436126695424 |
---|---|
author | Henson, Michael A. |
author_facet | Henson, Michael A. |
author_sort | Henson, Michael A. |
collection | PubMed |
description | Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. In this study, an in silico pipeline was used to process 16S rRNA gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-specific models of bacterial community metabolism. Clustered metabolite production rates generated from post-diagnosis samples generated a high Enterobacteriaceae abundance cluster containing disproportionately large numbers of recurrent samples and patients. This cluster was predicted to have significantly reduced capabilities for secondary bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering from recurrent CDI and their stool donors, the community modeling method generated a high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile spore germination and/or toxin synthesis. |
format | Online Article Text |
id | pubmed-7932513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79325132021-03-15 Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection Henson, Michael A. PLoS Comput Biol Research Article Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. In this study, an in silico pipeline was used to process 16S rRNA gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-specific models of bacterial community metabolism. Clustered metabolite production rates generated from post-diagnosis samples generated a high Enterobacteriaceae abundance cluster containing disproportionately large numbers of recurrent samples and patients. This cluster was predicted to have significantly reduced capabilities for secondary bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering from recurrent CDI and their stool donors, the community modeling method generated a high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile spore germination and/or toxin synthesis. Public Library of Science 2021-02-22 /pmc/articles/PMC7932513/ /pubmed/33617526 http://dx.doi.org/10.1371/journal.pcbi.1008782 Text en © 2021 Michael A. Henson http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Henson, Michael A. Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title | Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title_full | Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title_fullStr | Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title_full_unstemmed | Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title_short | Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection |
title_sort | computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent clostridioides difficile infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932513/ https://www.ncbi.nlm.nih.gov/pubmed/33617526 http://dx.doi.org/10.1371/journal.pcbi.1008782 |
work_keys_str_mv | AT hensonmichaela computationalmodelingofthegutmicrobiotarevealsputativemetabolicmechanismsofrecurrentclostridioidesdifficileinfection |