Cargando…
Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning
Phenotypic profiling of large three-dimensional microscopy data sets has not been widely adopted due to the challenges posed by cell segmentation and feature selection. The computational demands of automated processing further limit analysis of hard-to-segment images such as of neurons and organoids...
Autores principales: | Mergenthaler, Philipp, Hariharan, Santosh, Pemberton, James M., Lourenco, Corey, Penn, Linda Z., Andrews, David W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932518/ https://www.ncbi.nlm.nih.gov/pubmed/33617523 http://dx.doi.org/10.1371/journal.pcbi.1008630 |
Ejemplares similares
-
A reference library for assigning protein subcellular localizations by image-based machine learning
por: Schormann, Wiebke, et al.
Publicado: (2020) -
Modelling the MYC-driven normal-to-tumour switch in breast cancer
por: Lourenco, Corey, et al.
Publicado: (2019) -
FRC-QE: a robust and comparable 3D microscopy image quality metric for cleared organoids
por: Preusser, Friedrich, et al.
Publicado: (2021) -
Neuronal Culture Microenvironments Determine Preferences in Bioenergetic Pathway Use
por: Sünwoldt, Juliane, et al.
Publicado: (2017) -
Investigating Gene Function for Neuronal Survival After Metabolic Stress Using Semi-Automated Fluorescence Microscopy and Automated Image Analysis
por: Wendland, Kristin, et al.
Publicado: (2018)