Cargando…
Likelihood-based approach to discriminate mixtures of network models that vary in time
Discriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a...
Autores principales: | Arnold, Naomi A., Mondragón, Raul J., Clegg, Richard G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933268/ https://www.ncbi.nlm.nih.gov/pubmed/33664321 http://dx.doi.org/10.1038/s41598-021-84085-0 |
Ejemplares similares
-
Cox models with time‐varying covariates and partly‐interval censoring–A maximum penalised likelihood approach
por: Webb, Annabel, et al.
Publicado: (2022) -
Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation
por: Ornik, Melkior, et al.
Publicado: (2021) -
An Investigation into Compound Likelihood Ratios for Forensic DNA Mixtures
por: Wivell, Richard, et al.
Publicado: (2023) -
Robust fitting of mixtures of GLMs by weighted likelihood
por: Greco, Luca
Publicado: (2021) -
Likelihood expression for time-dependent mixing analyses using a discriminating variable
por: Schneider, O
Publicado: (1997)