Cargando…

Engineering a lipoxygenase from cyclocybe aegerita towards long chain polyunsaturated fatty acids

The basidiomycetous lipoxygenase Lox1 from Cyclocybe aegerita catalyzes the oxygenation of polyunsaturated fatty acids (PUFAs) with a high preference towards the C18-PUFA linoleic acid (C18:2 (ω-6)). In contrast, longer PUFAs, generally not present in the fungal cell such as eicosatrienoic acid (C20...

Descripción completa

Detalles Bibliográficos
Autores principales: Karrer, Dominik, Gand, Martin, Rühl, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933318/
https://www.ncbi.nlm.nih.gov/pubmed/33661405
http://dx.doi.org/10.1186/s13568-021-01195-8
Descripción
Sumario:The basidiomycetous lipoxygenase Lox1 from Cyclocybe aegerita catalyzes the oxygenation of polyunsaturated fatty acids (PUFAs) with a high preference towards the C18-PUFA linoleic acid (C18:2 (ω-6)). In contrast, longer PUFAs, generally not present in the fungal cell such as eicosatrienoic acid (C20:3(ω-3)) and docosatrienoic acid (C22:3 (ω-3)), are converted with drastically lower activities. With site-directed mutagenesis, we were able to create two variants with enhanced activities towards longer chain PUFAs. The W330L variant showed a ~ 20 % increased specific activity towards C20:3(ω-3), while a ~ 2.5-fold increased activity against C22:3 (ω-3) was accomplished by the V581 variant.