Cargando…
A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology
Artificial intelligence technology has advanced rapidly in recent years and has the potential to improve healthcare outcomes. However, technology uptake will be largely driven by clinicians, and there is a paucity of data regarding the attitude that clinicians have to this new technology. In June–Au...
Autores principales: | Scheetz, Jane, Rothschild, Philip, McGuinness, Myra, Hadoux, Xavier, Soyer, H. Peter, Janda, Monika, Condon, James J.J., Oakden-Rayner, Luke, Palmer, Lyle J., Keel, Stuart, van Wijngaarden, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933437/ https://www.ncbi.nlm.nih.gov/pubmed/33664367 http://dx.doi.org/10.1038/s41598-021-84698-5 |
Ejemplares similares
-
Retinal imaging biomarkers of Alzheimer's disease: A systematic review and meta‐analysis of studies using brain amyloid beta status for case definition
por: Ashraf, Gizem, et al.
Publicado: (2023) -
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
por: Oakden-Rayner, Luke, et al.
Publicado: (2017) -
Real-world artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia
por: Scheetz, Jane, et al.
Publicado: (2021) -
The environmental needs of clinician-scientists in ophthalmology
por: Ali, Mohammad Javed, et al.
Publicado: (2017) -
A clinician's guide to omics resources in dermatology
por: Doolan, Brent J., et al.
Publicado: (2022)