Cargando…
Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydroge...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933484/ https://www.ncbi.nlm.nih.gov/pubmed/33647858 http://dx.doi.org/10.1016/j.redox.2021.101898 |
_version_ | 1783660621463552000 |
---|---|
author | Huang, Yaqian Li, Zongmin Zhang, Lulu Tang, Huan Zhang, Heng Wang, Chu Chen, Selena Ying Bu, Dingfang Zhang, Zaifeng Zhu, Zhigang Yuan, Piaoliu Li, Kun Yu, Xiaoqi Kong, Wei Tang, Chaoshu Jung, Youngeun Ferreira, Renan B. Carroll, Kate S. Du, Junbao Yang, Jing Jin, Hongfang |
author_facet | Huang, Yaqian Li, Zongmin Zhang, Lulu Tang, Huan Zhang, Heng Wang, Chu Chen, Selena Ying Bu, Dingfang Zhang, Zaifeng Zhu, Zhigang Yuan, Piaoliu Li, Kun Yu, Xiaoqi Kong, Wei Tang, Chaoshu Jung, Youngeun Ferreira, Renan B. Carroll, Kate S. Du, Junbao Yang, Jing Jin, Hongfang |
author_sort | Huang, Yaqian |
collection | PubMed |
description | Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydrogen peroxide (H(2)O(2)) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H(2)O(2) to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO(2). Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO(2), among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO(2) on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO(2) in vascular pathophysiology through a redox-dependent mechanism. |
format | Online Article Text |
id | pubmed-7933484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-79334842021-03-12 Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling Huang, Yaqian Li, Zongmin Zhang, Lulu Tang, Huan Zhang, Heng Wang, Chu Chen, Selena Ying Bu, Dingfang Zhang, Zaifeng Zhu, Zhigang Yuan, Piaoliu Li, Kun Yu, Xiaoqi Kong, Wei Tang, Chaoshu Jung, Youngeun Ferreira, Renan B. Carroll, Kate S. Du, Junbao Yang, Jing Jin, Hongfang Redox Biol Research Paper Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydrogen peroxide (H(2)O(2)) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H(2)O(2) to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO(2). Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO(2), among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO(2) on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO(2) in vascular pathophysiology through a redox-dependent mechanism. Elsevier 2021-02-18 /pmc/articles/PMC7933484/ /pubmed/33647858 http://dx.doi.org/10.1016/j.redox.2021.101898 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Huang, Yaqian Li, Zongmin Zhang, Lulu Tang, Huan Zhang, Heng Wang, Chu Chen, Selena Ying Bu, Dingfang Zhang, Zaifeng Zhu, Zhigang Yuan, Piaoliu Li, Kun Yu, Xiaoqi Kong, Wei Tang, Chaoshu Jung, Youngeun Ferreira, Renan B. Carroll, Kate S. Du, Junbao Yang, Jing Jin, Hongfang Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title | Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title_full | Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title_fullStr | Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title_full_unstemmed | Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title_short | Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling |
title_sort | endogenous so(2)-dependent smad3 redox modification controls vascular remodeling |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933484/ https://www.ncbi.nlm.nih.gov/pubmed/33647858 http://dx.doi.org/10.1016/j.redox.2021.101898 |
work_keys_str_mv | AT huangyaqian endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT lizongmin endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT zhanglulu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT tanghuan endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT zhangheng endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT wangchu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT chenselenaying endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT budingfang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT zhangzaifeng endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT zhuzhigang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT yuanpiaoliu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT likun endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT yuxiaoqi endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT kongwei endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT tangchaoshu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT jungyoungeun endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT ferreirarenanb endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT carrollkates endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT dujunbao endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT yangjing endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling AT jinhongfang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling |