Cargando…

Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling

Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydroge...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yaqian, Li, Zongmin, Zhang, Lulu, Tang, Huan, Zhang, Heng, Wang, Chu, Chen, Selena Ying, Bu, Dingfang, Zhang, Zaifeng, Zhu, Zhigang, Yuan, Piaoliu, Li, Kun, Yu, Xiaoqi, Kong, Wei, Tang, Chaoshu, Jung, Youngeun, Ferreira, Renan B., Carroll, Kate S., Du, Junbao, Yang, Jing, Jin, Hongfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933484/
https://www.ncbi.nlm.nih.gov/pubmed/33647858
http://dx.doi.org/10.1016/j.redox.2021.101898
_version_ 1783660621463552000
author Huang, Yaqian
Li, Zongmin
Zhang, Lulu
Tang, Huan
Zhang, Heng
Wang, Chu
Chen, Selena Ying
Bu, Dingfang
Zhang, Zaifeng
Zhu, Zhigang
Yuan, Piaoliu
Li, Kun
Yu, Xiaoqi
Kong, Wei
Tang, Chaoshu
Jung, Youngeun
Ferreira, Renan B.
Carroll, Kate S.
Du, Junbao
Yang, Jing
Jin, Hongfang
author_facet Huang, Yaqian
Li, Zongmin
Zhang, Lulu
Tang, Huan
Zhang, Heng
Wang, Chu
Chen, Selena Ying
Bu, Dingfang
Zhang, Zaifeng
Zhu, Zhigang
Yuan, Piaoliu
Li, Kun
Yu, Xiaoqi
Kong, Wei
Tang, Chaoshu
Jung, Youngeun
Ferreira, Renan B.
Carroll, Kate S.
Du, Junbao
Yang, Jing
Jin, Hongfang
author_sort Huang, Yaqian
collection PubMed
description Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydrogen peroxide (H(2)O(2)) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H(2)O(2) to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO(2). Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO(2), among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO(2) on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO(2) in vascular pathophysiology through a redox-dependent mechanism.
format Online
Article
Text
id pubmed-7933484
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-79334842021-03-12 Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling Huang, Yaqian Li, Zongmin Zhang, Lulu Tang, Huan Zhang, Heng Wang, Chu Chen, Selena Ying Bu, Dingfang Zhang, Zaifeng Zhu, Zhigang Yuan, Piaoliu Li, Kun Yu, Xiaoqi Kong, Wei Tang, Chaoshu Jung, Youngeun Ferreira, Renan B. Carroll, Kate S. Du, Junbao Yang, Jing Jin, Hongfang Redox Biol Research Paper Sulfur dioxide (SO(2)) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO(2) influences its upper-stream targets have been elusive. Here we show that SO(2) may mediate conversion of hydrogen peroxide (H(2)O(2)) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H(2)O(2) to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO(2). Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO(2), among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO(2) on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO(2) in vascular pathophysiology through a redox-dependent mechanism. Elsevier 2021-02-18 /pmc/articles/PMC7933484/ /pubmed/33647858 http://dx.doi.org/10.1016/j.redox.2021.101898 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Huang, Yaqian
Li, Zongmin
Zhang, Lulu
Tang, Huan
Zhang, Heng
Wang, Chu
Chen, Selena Ying
Bu, Dingfang
Zhang, Zaifeng
Zhu, Zhigang
Yuan, Piaoliu
Li, Kun
Yu, Xiaoqi
Kong, Wei
Tang, Chaoshu
Jung, Youngeun
Ferreira, Renan B.
Carroll, Kate S.
Du, Junbao
Yang, Jing
Jin, Hongfang
Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title_full Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title_fullStr Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title_full_unstemmed Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title_short Endogenous SO(2)-dependent Smad3 redox modification controls vascular remodeling
title_sort endogenous so(2)-dependent smad3 redox modification controls vascular remodeling
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933484/
https://www.ncbi.nlm.nih.gov/pubmed/33647858
http://dx.doi.org/10.1016/j.redox.2021.101898
work_keys_str_mv AT huangyaqian endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT lizongmin endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT zhanglulu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT tanghuan endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT zhangheng endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT wangchu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT chenselenaying endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT budingfang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT zhangzaifeng endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT zhuzhigang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT yuanpiaoliu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT likun endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT yuxiaoqi endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT kongwei endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT tangchaoshu endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT jungyoungeun endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT ferreirarenanb endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT carrollkates endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT dujunbao endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT yangjing endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling
AT jinhongfang endogenousso2dependentsmad3redoxmodificationcontrolsvascularremodeling