Cargando…
Air-encapsulating elastic mechanism of submerged Taraxacum blowballs
In this article, we report the observation of an air-encapsulating elastic mechanism of Dandelion spherical seed heads, namely blowballs, when submerged underwater. This peculiarity seems to be fortuitous since Taraxacum is living outside water; nevertheless, it could become beneficial for a better...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933492/ https://www.ncbi.nlm.nih.gov/pubmed/33718857 http://dx.doi.org/10.1016/j.mtbio.2021.100095 |
Sumario: | In this article, we report the observation of an air-encapsulating elastic mechanism of Dandelion spherical seed heads, namely blowballs, when submerged underwater. This peculiarity seems to be fortuitous since Taraxacum is living outside water; nevertheless, it could become beneficial for a better survival under critical conditions, e.g. of temporary flooding. The scaling of the volume of the air entrapped suggests its fractal nature with a dimension of 2.782 and a fractal air volume fraction of 4.82 × 10(−2) m(0.218), resulting in nominal air volume fractions in the range of 14–23%. This aspect is essential for the optimal design of bioinspired materials made up of Dandelion-like components. The miniaturization of such components leads to an increase in the efficiency of the air encapsulation up to the threshold (efficiency = 1) achieved for an optimal critical size. Thus, the optimal design is accomplished using small elements, with the optimal size, rather than using larger elements in a lower number. The described phenomenon, interesting per se, also brings bioinspired insights toward new related technological solutions for underwater air-trapping and air-bubbles transportation, e.g. the body surface of a man could allow an apnea (air consumption of 5–10 l/min) of about 10 min if it is covered by a material made up of a periodic repetition of Dandelion components of diameter [Formula: see text] 18 μm and having a total thickness of about 3–6 cm. |
---|