Cargando…
nMNSD—A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift
The recent “multi-neuronal spike sequence detector” (MNSD) architecture integrates the weight- and delay-adjustment methods by combining heterosynaptic plasticity with the neurocomputational feature spike latency, representing a new opportunity to understand the mechanisms underlying biological lear...
Autores principales: | Susi, Gianluca, Antón-Toro, Luis F., Maestú, Fernando, Pereda, Ernesto, Mirasso, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933525/ https://www.ncbi.nlm.nih.gov/pubmed/33679293 http://dx.doi.org/10.3389/fnins.2021.582608 |
Ejemplares similares
-
A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP
por: Susi, Gianluca, et al.
Publicado: (2018) -
FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
por: Susi, Gianluca, et al.
Publicado: (2021) -
Understanding the effects of cortical gyrification in tACS: insights from experiments and computational models
por: Cabrera-Álvarez, Jesús, et al.
Publicado: (2023) -
Corrigendum: Understanding the effects of cortical gyrification in tACS: insights from experiments and computational models
por: Cabrera-Álvarez, Jesús, et al.
Publicado: (2023) -
Inferring correlations associated to causal interactions in brain signals using autoregressive models
por: López-Madrona, Víctor J., et al.
Publicado: (2019)