Cargando…
DriverSubNet: A Novel Algorithm for Identifying Cancer Driver Genes by Subnetwork Enrichment Analysis
Identification of driver genes from mass non-functional passenger genes in cancers is still a critical challenge. Here, an effective and no parameter algorithm, named DriverSubNet, is presented for detecting driver genes by effectively mining the mutation and gene expression information based on sub...
Autores principales: | Zhang, Di, Bin, Yannan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933651/ https://www.ncbi.nlm.nih.gov/pubmed/33679866 http://dx.doi.org/10.3389/fgene.2020.607798 |
Ejemplares similares
-
FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2020) -
Corrigendum: FI-Net: Identification of Cancer Driver Genes by Using Functional Impact Prediction Neural Network
por: Gu, Hong, et al.
Publicado: (2021) -
Multi-Omics Analysis Reveals Novel Subtypes and Driver Genes in Glioblastoma
por: Yuan, Yang, et al.
Publicado: (2020) -
SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis
por: Pulido-Tamayo, Sergio, et al.
Publicado: (2016) -
pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks
por: Ulgen, Ege, et al.
Publicado: (2019)