Cargando…
NF45/NF90‐mediated rDNA transcription provides a novel target for immunosuppressant development
Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2‐like sequences in rDNA promoter upon T‐c...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933818/ https://www.ncbi.nlm.nih.gov/pubmed/33555115 http://dx.doi.org/10.15252/emmm.202012834 |
Sumario: | Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2‐like sequences in rDNA promoter upon T‐cell activation in vitro. The elevated pre‐rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T‐cell activation can be significantly suppressed by inhibiting NF45/NF90‐dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription‐specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off‐target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90‐mediated rDNA transcription as a novel signaling pathway essential for T‐cell activation and as a new target for the development of safe and effective immunosuppressants. |
---|