Cargando…
seqQscorer: automated quality control of next-generation sequencing data using machine learning
Controlling quality of next-generation sequencing (NGS) data files is a necessary but complex task. To address this problem, we statistically characterize common NGS quality features and develop a novel quality control procedure involving tree-based and deep learning classification algorithms. Predi...
Autores principales: | Albrecht, Steffen, Sprang, Maximilian, Andrade-Navarro, Miguel A., Fontaine, Jean-Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934511/ https://www.ncbi.nlm.nih.gov/pubmed/33673854 http://dx.doi.org/10.1186/s13059-021-02294-2 |
Ejemplares similares
-
Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality
por: Sprang, Maximilian, et al.
Publicado: (2022) -
Statistical guidelines for quality control of next-generation sequencing techniques
por: Sprang, Maximilian, et al.
Publicado: (2021) -
SeqWiz: a modularized toolkit for next-generation protein sequence database management and analysis
por: Zhang, Ping, et al.
Publicado: (2023) -
Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation
por: Albrecht, Steffen, et al.
Publicado: (2022) -
QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation
por: Wagle, Prerana, et al.
Publicado: (2015)