Cargando…
Identifying Robust Radiomics Features for Lung Cancer by Using In-Vivo and Phantom Lung Lesions
We propose a novel framework for determining radiomics feature robustness by considering the effects of both biological and noise signals. This framework is preliminarily tested in a study predicting the epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) pa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934702/ https://www.ncbi.nlm.nih.gov/pubmed/33681463 http://dx.doi.org/10.3390/tomography7010005 |